Showing posts with label Space Related. Show all posts
Showing posts with label Space Related. Show all posts

16 August 2018

Donald Trump's Space Force Plans Analysed By A Sci-Fi Expert

by

Donald Trump's Space Force Plans Analysed By A Sci-Fi Expert
(Marc Ward/Shutterstock.com)
The US leadership has plans to introduce a “US Space Forceby 2020. Already announced by president Donald Trump in June, US vice president Mike Pence outlined further details of the plan at a press conference on August 9. The Space Force, he said, would consist of an elite corps of soldiers trained to fight in space, and a space command that would design military strategies for warfare beyond the atmosphere.

Much acrimony and ridicule has ensued, with debates over what such a force could or could not do; the only certainty being that it will cost billions of dollars. Seasoned watchers of both US politics and US science fiction will have had the uncanny feeling, though, of having seen this all before.
The rhetoric of both Pence and Trump, referring respectively to “the boundless expanse of space” and the necessity for “American dominance”, is inherently science-fictional, but of a particularly American kind. It is not the cooperatist vision of Soviet science fiction, nor the ramshackled approach of British sci-fi (take Doctor Who), and certainly not the Afrofuturist marriage of esoteric technology and indigenous folklore, seen most recently in Ava DuVernay’s A Wrinkle in Time.

An American fiction 
Instead, it is the projection of the values of Manifest Destiny (that the settler population has an inalienable right to the uncharted lands) into outer space. Not for nothing did Trump’s 2020 reelection campaign manager, Brad Parscale, write that Space Force would be “a groundbreaking endeavor for America and the final frontier”.

As film and media studies expert, Constance Penley, observed in her 1997 book, NASA/Trek, the Cold War politics of the Space Race dovetailed beautifully with the frontier vision of Gene Roddenberry’s Star Trek. This is particularly true of the pioneer spirit of (to paraphrase the original series’ opening words) exploring “strange new worlds”, seeking “out new life and new civilisations”, and “boldly” going “where no man has gone before”.

Roddenberry himself was in a lineage of writers from Edgar Rice Burroughs to Ray Bradbury who, with varying degrees of scepticism, projected frontier values into outer space (most typically, onto the surface of Mars). And as historian Frederic Krome has shown, future war stories published in the US pulps between 1914 and 1945 fed into the cultural and military thinking of how to plan for future conflicts.

Perhaps most bizarrely, the mission to capture Saddam Hussein during the Iraq War was named after John Milius’s post-apocalyptic teen movie, Red Dawn (1984).
Indeed, the Strategic Defence Initiative (SDI), envisaged by president Ronald Reagan in 1983, not only became known as Star Wars, but its rhetoric was also derived from science fiction writers such as Ben Bova and Jerry Pournelle. SDI’s vision of a circling belt of laser-armed satellites, protecting the US from Soviet attack, chimed perfectly with Pournelle’s dream, and with that of other science fiction writers such as Robert Heinlein and Larry Niven – an American renaissance through the militarisation and colonisation of space.

Space force rebooted 
The current rhetoric of Pence and Trump, in announcing their Space Force, almost exactly echoes the rhetoric of SDI and its then supporters. Both groups posit a pattern of US military decline, under the alleged negligence of previous administrations, in which space, the “natural” home of the US following the moon landings, has been left exposed to foreign aggressors. According to them, it is their enemies, not the US, who have militarised space. And now, they argue, only a show of strength can make space safe again for US democracy.

In this way, the ratcheting-up of an arms race in space is glossed over by a utopian vision, in which the US is regalvanised by dreams of expansion into space – see, for example, the proposed mission to Mars.

There has been genuine concern since 2007, when China shot down one of its own satellites. But to imply that space has only now begun to be militarised glosses over the steady militarisation of space since the 1960s, while even supporters of the proposal suggest a cyber-hacking force is more necessary.

Instead, the proposal for an elite corps of specialised soldiers and strategists sounds more like Heinlein’s controversial novel of a fully militarised society, Starship Troopers (1959), in which humans are embroiled in a seemingly endless war against the utterly alien “Bugs”. There are echoes too of E E Smith’s interstellar police force, Galactic Patrol (1937), and even the BBC’s more low-key Star Cops (1987), glumly policing off-world mining colonies in the outer solar system. Of course, the proposal may never take flight – it would still require an Act of Congress – so these more hyperbolic fears and desires may need to be momentarily put aside.

The Conversation
Instead, what we can deduce from the proposal is that we are firmly in the logic of the reboot, that much loved tactic of longrunning movie franchises. But, as science fiction scholar Gerry Canavan has argued, the reboot “can show us a story, but can’t tell us a plot”. Rather than an original and inspiring vision of space exploration, what we have instead here is a meaningless reiteration of past rhetoric that may, quite literally, go nowhere.

About Today's Contributor:
Paul March-Russell, Lecturer in Comparative Literature, University of Kent


This article was originally published on The Conversation. 


18 June 2018

Astronaut Sally K. Ride's Legacy – Encouraging Young Women To Embrace Science And Engineering

by

Mission specialist Sally Ride became the first American woman to fly in space.
Mission specialist Sally Ride became the first American woman to fly in space. (NASA's Goddard Space Flight Center)
On June 18, 1983, 35 years ago, Sally Ride became the first American woman to launch into space, riding the Space Shuttle STS-7 flight with four other crew members. Only five years earlier, in 1978, she had been selected to the first class of 35 astronauts – including six women – who would fly on the Space Shuttle.

Sally’s first ride, with her STS-7 crewmates. In addition to launching America’s first female astronaut, it was also the first mission with a five-member crew.
Sally’s first ride, with her STS-7 crewmates. In addition to launching America’s first female astronaut, it was also the first mission with a five-member crew. Front row, left to right: Ride, commander Bob Crippen, pilot Frederick Hauck. Back row, left to right: John Fabian, Norm Thagard. (NASA)
Much has happened in the intervening years. During the span of three decades, the shuttles flew 135 times carrying hundreds of American and international astronauts into space before they were retired in 2011. The International Space Station began to fly in 1998 and has been continuously occupied since 2001, orbiting the Earth once every 90 minutes. More than 50 women have now flown into space, most of them Americans. One of these women, Dr. Peggy Whitson, became chief of the Astronaut Office and holds the American record for number of hours in space.

The Space Shuttle democratized spaceflight

The Space Shuttle was an amazing flight vehicle: It launched like a rocket into Low Earth Orbit in only eight minutes, and landed softly like a glider after its mission. What is not well known is that the Space Shuttle was an equalizer and enabler, opening up space exploration to a wider population of people from planet Earth.


STS-50 Crew photo with commander Richard N. Richards and pilot Kenneth D. Bowersox, mission specialists Bonnie J. Dunbar, Ellen S. Baker and Carl J. Meade, and payload specialists Lawrence J. DeLucas and Eugene H. Trinh
STS-50 Crew photo with commander Richard N. Richards and pilot Kenneth D. Bowersox, mission specialists Bonnie J. Dunbar, Ellen S. Baker and Carl J. Meade, and payload specialists Lawrence J. DeLucas and Eugene H. Trinh. The photo was taken in front of the Columbia Shuttle, which Dunbar helped to build.(NASA)
This inclusive approach began in 1972 when Congress and the president approved the Space Shuttle budget and contract. Spacesuits, seats and all crew equipment were initially designed for a larger range of sizes to fit all body types, and the waste management system was modified for females. Unlike earlier vehicles, the Space Shuttle could carry up to eight astronauts at a time. It had a design more similar to an airplane than a small capsule, with two decks, sleeping berths, large laboratories and a galley. It also provided privacy.

I graduated with an engineering degree from the University of Washington in 1971 and, by 1976, I was a young engineer working on the first Space Shuttle, Columbia, with Rockwell International at Edwards Air Force Base, in California. I helped to design and produce the thermal protection system – those heat resistant ceramic tiles – which allowed the shuttle to re-enter the Earth’s atmosphere for up to 100 flights.



Mike Anderson and Bonnie Dunbar flew together on STS-89 in 1998. They both graduated from University of Washington. Anderson was killed in the Columbia accident, in 2003.
Mike Anderson and Bonnie Dunbar flew together on STS-89 in 1998. They both graduated from University of Washington. Anderson was killed in the Columbia accident, in 2003. (NASA)
It was a heady time; a new space vehicle could carry large crews and “cargo,” including space laboratories and the Hubble Space Telescope. The Shuttle also had a robotic arm, which was critical for the assembly of the International Space Station, and an “airlock” for space walks, and enabled us to build the International Space Station.

I knew from my first day at Rockwell that this vehicle had been designed for both men and women. A NASA engineer at the Langley Research Center gave me a very early “heads up” in 1973 that they would eventually select women astronauts for the Space Shuttle. In the 1970s there were visionary men and women in NASA, government and in the general public, who saw a future for more women in science and engineering, and for flying into space. Women were not beating down the door to be included in the Space Shuttle program, we were being invited to be an integral part of a larger grand design for exploring space.


1978: Becoming an astronaut

The selection process for the first class of Space Shuttle astronauts, to include women, opened in 1977. NASA approached the recruitment process with a large and innovative publicity campaign encouraging men and women of all ethnic backgrounds to apply. One of NASA’s recruiters was actress Nichelle Nichols who played Lt. Ohura on the “Star Trek” series, which was popular at the time. Sally learned about NASA’s astronaut recruitment drive through an announcement, possibly on a job bulletin board, somewhere at Stanford University. Sally had been a talented nationally ranked tennis player, but her passion was physics. The opportunity to fly into space intrigued her and looked like a challenge and rewarding career she could embrace.

Sally and I arrived at NASA at the same time in 1978 – she as part of the “TFNG” (“Thirty-Five New Guys”) astronaut class and I as a newly minted mission controller, training to support the Space Shuttle. I had already been in the aerospace industry for several years and had made my choice for “space” at the age of 9 on a cattle ranch in Washington state. I also applied for the 1978 astronaut class, but was not selected until 1980.


Sally and I connected on the Flight Crew Operations co-ed softball team. We both played softball from an early age and were both private pilots, flying our small planes together around southeast Texas. We also often discussed our perspectives on career selection, and how fortunate we were to have teachers and parents and other mentors who encouraged us to study math and science in school – the enabling subjects for becoming an astronaut.


STS-7: June 18 1983



In January 1978, NASA selected six women into the class of 35 new astronauts to fly on the Space Shuttle.
In January 1978, NASA selected six women into the class of 35 new astronauts to fly on the Space Shuttle. From left to right are Shannon W. Lucid, Ph.D., Margaret Rhea Seddon, M.D., Kathryn D. Sullivan, Ph.D., Judith A. Resnik, Ph.D., Anna L. Fisher, M.D., and Sally K. Ride, Ph.D. (NASA)
Although Sally was one of six women in the 1978 class, she preferred to be considered one of 35 new astronauts – and to be judged by merit, not gender. It was important to all the women that the bar be as high as it was for the men. From an operational and safety point of view, that was also equally important. In an emergency, there are no special allowances for gender or ethnicity: Everyone had to pull their own weight. In fact, it has been said that those first six women were not just qualified, they were more than qualified.

While Sally was honored to be picked as the first woman from her class to fly, she shied away from the limelight. She believed that she flew for all Americans, regardless of gender, but she also understood the expectations on her for being selected “first.” As she flew on STS-7, she paid tribute to those who made it possible for her to be there: to her family and teachers, to those who made and operated the Space Shuttle, to her crewmates, and to all of her astronaut classmates including Dr. Kathy Sullivan, Dr. Rhea Seddon, Dr. Anna Fisher, Dr. Shannon Lucid, and Dr. Judy Resnick (who lost her life on Challenger). With all of the attention, Sally was a gracious “first.” And the launch of STS-7 had a unique celebratory flair. Signs around Kennedy Space Center said “Fly Sally Fly,” and John Denver gave a special concert the night before the launch, not far from the launch pad.


Continuing the momentum

One of the topics that Sally and I discussed frequently was why so few young girls were entering into math, technology, science and engineering – which became known as STEM careers in the late 1990s. Both of us had been encouraged and pushed by male and female mentors and “cheerleaders.” By 1972, companies with federal contracts were actively recruiting women engineers. NASA had opened up spaceflight to women in 1978, and was proud of the fact that they were recruiting and training women as astronauts and employing them in engineering and the sciences.

National needs for STEM talent and supportive employment laws were creating an environment such that if a young woman wished to become an aerospace engineer, a physicist, a chemist, a medical doctor, an astronomer or an astrophysicist, they could. One might have thought that Sally’s legendary flight, and those of other women astronauts over the last 35 years might have inspired a wave of young women (and men) into STEM careers. For example, when Sally flew into space in 1983, a 12-year-old middle school girl back then would now be 47. If she had a daughter, that daughter might be 25. After two generations, we might have expected that there would be large bow wave of young energized women entering into the STEM careers. But this hasn’t happened.


Rather, we have a growing national shortage of engineers and research scientists in this nation, which threatens our prosperity and national security. The numbers of women graduating in engineering grew from 1 percent in 1971 to about 20 percent in 35 years. But women make up 50 percent of the population, so there is room for growth. So what are the “root causes” for this lack of growth?

K-12 STEM education

Many reports have cited deficient K-12 math and science education as contributing to the relatively stagnant graduation rates in STEM careers.

Completing four years of math in high school, as well as physics, chemistry and biology is correlated with later success in science, mathematics and engineering in college. Without this preparation, career options are reduced significantly. Even though I graduated from a small school in rural Washington state, I was able to study algebra, geometry, trigonometry, math analysis, biology, chemistry and physics by the time I graduated. Those were all prerequisites for entry into the University of Washington College of Engineering. Sally had the same preparation before she entered into physics.


As part of NASA’s commitment to the next generation of explorers, NASA Ames collaborated with Sally Ride Science to sponsor and host the Sally Ride Science Festival at the NASA Research Park
As part of NASA’s commitment to the next generation of explorers, NASA Ames collaborated with Sally Ride Science to sponsor and host the Sally Ride Science Festival at the NASA Research Park. Hundreds of San Francisco Bay Area girls, their teachers and parents enjoy a fun-filled interactive exploration of science, technology, engineering and mathematics on Sept. 27, 2008. (NASA Ames Research Center / Dominic Hart)
Although we have many great K-12 schools in the nation, too many schools now struggle to find qualified mathematics and physics teachers. Inspiring an interest in these topics is also key to retention and success. Being excited about a particular subject matter can keep a student engaged even through the tough times. Participation in “informal science education” at museums and camps is becoming instrumental for recruiting students into STEM careers, especially as teachers struggle to find the time in a cramped curriculum to teach math and science.

Research has shown that middle school is a critical period for young boys and girls to establish their attitudes toward math and science, to acquire fundamental skills that form the basis for progression into algebra, geometry and trigonometry, and to develop positive attitudes toward the pursuit of STEM careers. When Dr. Sally Ride retired from NASA, she understood this, and founded Imaginary Lines and, later, Sally Ride Science, to influence career aspirations for middle school girls. She hosted science camps throughout the nation, exposing young women and their parents to a variety of STEM career options. Sally Ride Science continues its outreach through the University of California at San Diego.


Challenging old stereotypes and honoring Sally’s legacy



Sally Ride and Bonnie Dunbar are fighting outdated stereotypes that women are not good at STEM subjects
Sally Ride and Bonnie Dunbar are fighting outdated stereotypes that women are not good at STEM subjects. (Creativa Images/shutterstock.com)
However, there are still challenges, especially in this social media-steeped society. I and other practicing women engineers have observed that young girls are often influenced by what they perceive “society thinks” of them.

In a recent discussion with an all-girl robotics team competing at NASA, I asked the high school girls if they had support from teachers and parents, and they all said “yes.” But then, they asked, “Why doesn’t society support us?” I was puzzled and asked them what they meant. They then directed me to the internet where searches on engineering careers returned a story after story of describing “hostile work environments.


Sadly, most of these stories are very old and are often from studies with very small populations. The positive news, from companies, government, universities and such organizations as the National Academy of Engineers, Physics Girl and Society of Women Engineers, rarely rises to the top of the search results. Currently, companies and laboratories in the U.S. are desperate to employ STEM qualified and inspired women. But many of our young women continue to “opt out.”


Young women are influenced by the media images they see every day. We continue to see decades-old negative stereotypes and poor images of engineers and scientists on television programs and in the movies.


Popular TV celebrities continue to boast on air that they either didn’t like math or struggled with it. Sally Ride Science helps to combat misconceptions and dispel myths by bringing practicing scientists and engineers directly to the students. However, in order to make a more substantial difference, this program and others like it require help from the media organizations. The nation depends upon the technology and science produced by our scientists and engineers, but social media, TV hosts, writers and movie script developers rarely reflect this reality. So it may be, that in addition to K-12 challenges in our educational system, the “outdated stererotypes” portrayed in the media are also discouraging our young women from entering science and engineering careers.


Unlimited opportunities in science and engineering

The reality? More companies than ever are creating family-friendly work environments and competing for female talent. In fact, there is a higher demand from business, government and graduate schools in the U.S. for women engineers and scientists than can be met by the universities.

Both Sally and I had wonderful careers supported by both men and women. NASA was a great work environment and continues to be – the last two astronaut classes have been about 50 percent female.


The ConversationI think that Sally would be proud of how far the nation has come with respect to women in space, but would also want us to focus on the future challenges for recruiting more women into science and engineering, and to reignite the passion for exploring space.


About Today's Contributor:

Bonnie J. Dunbar, NASA astronaut (Ret) and TEES Distinguished Research Professor, Aerospace Engineering, Texas A&M University


This article was originally published on The Conversation


Related Videos:





1 October 2017

Dear Elon Musk: Your Dazzling Mars Plan Overlooks Some Big Nontechnical Hurdles

by

File 20171001 13542 15sjp1f
Will it be only a few decades before Mars tourism is a reality? (SpaceX, CC BY)
By Andrew Maynard, Arizona State University

Elon Musk has a plan, and it’s about as audacious as they come. Not content with living on our pale blue dot, Musk and his company SpaceX want to colonize Mars, fast. They say they’ll send a duo of supply ships to the red planet within five years. By 2024, they’re aiming to send the first humans. From there they have visions of building a space port, a city and, ultimately, a planet they’d like to “geoengineer” to be as welcoming as a second Earth.

If he succeeds, Musk could thoroughly transform our relationship with our solar system, inspiring a new generation of scientists and engineers along the way. But between here and success, Musk and SpaceX will need to traverse an unbelievably complex risk landscape.

Many will be technical. The rocket that’s going to take Musk’s colonizers to Mars (code named the “BFR” – no prizes for guessing what that stands for) hasn’t even been built yet. No one knows what hidden hurdles will emerge as testing begins. Musk does have a habit of successfully solving complex engineering problems though; and despite the mountainous technical challenges SpaceX faces, there’s a fair chance they’ll succeed.

As a scholar of risk innovation, what I’m not sure about is how SpaceX will handle some of the less obvious social and political hurdles they face. To give Elon Musk a bit of a head start, here are some of the obstacles I think he should have on his mission-to-Mars checklist.

Musk typically drives hard toward his goals – in this case, Mars. (AP Photo/Refugio Ruiz)

Planetary protection
Imagine there was once life on Mars, but in our haste to set up shop there, we obliterate any trace of its existence. Or imagine that harmful organisms exist on Mars and spacecraft inadvertently bring them back to Earth.

These are scenarios that keep astrobiologists and planetary protection specialists awake at night. They’ve led to unbelievably stringent international policies around what can and cannot be done on government-sponsored space missions.

Yet Musk’s plans threaten to throw the rule book on planetary protection out the window. As a private company SpaceX isn’t directly bound by international planetary protection policies. And while some governments could wrap the company up in space bureaucracy, they’ll find it hard to impose the same levels of hoop-jumping that NASA missions, for instance, currently need to navigate.

It’s conceivable (but extremely unlikely) that a laissez-faire attitude toward interplanetary contamination could lead to Martian bugs invading Earth. The bigger risk is stymying our chances of ever discovering whether life existed on Mars before human beings and their grubby microbiomes get there. And the last thing Musk needs is a whole community of disgruntled astrobiologists baying for his blood as he tramples over their turf and robs them of their dreams.

Ecoterrorism
Musk’s long-term vision is to terraform Mars – reengineer our neighboring planet as “a nice place to be” – and allow humans to become a multi-planetary species. Sounds awesome – but not to everyone. I’d wager there will be some people sufficiently appalled by the idea that they decide to take illegal action to interfere with it.

Ecoterrorists claimed responsibility in 1998 for burning part of a Colorado ski resort they said threatened animal habitats. (Vail Fire Department)

The mythology surrounding ecoterrorism makes it hard to pin down how much of it actually happens. But there certainly are individuals and groups like the Earth Liberation Front willing to flout the law in their quest to preserve pristine wildernesses. It’s a fair bet there will be people similarly willing to take extreme action to stop the pristine wilderness of Mars being desecrated by humans.

How this might play out is anyone’s guess, although science fiction novels like Kim Stanley Robinson’s “Mars Trilogy” give an interesting glimpse into what could transpire once we get there. More likely, SpaceX will need to be on the lookout for saboteurs crippling their operations before leaving Earth.

Space politics
Back in the days before private companies were allowed to send rockets into space, international agreements were signed that set out who could do what outside the Earth’s atmosphere. Under the United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, for instance, states agreed to explore space for the benefit of all humankind, not place weapons of mass destruction on celestial bodies and avoid harmful contamination.

That was back in 1967, four years before Elon Musk was born. With the emergence of ambitious private space companies like SpaceX, Blue Origin and others, though, who’s allowed to do what in the solar system is less clear. It’s good news for companies like SpaceX – at least in the short term. But this uncertainty is eventually going to crystallize into enforceable space policies, laws and regulations that apply to everyone. And when it does, Musk needs to make sure he’s not left out in the cold.

This is of course policy, not politics. But there are powerful players in the global space policy arena. If they’re rubbed the wrong way, it’ll be politics that determines how resulting policies affect SpaceX.

Climate change
Perhaps the biggest danger is that Musk’s vision of colonizing Mars looks too much like a disposable Earth philosophy – we’ve messed up this planet, so time to move on to the next. Of course, this idea may not factor into Musk’s motivation, but in the world of climate change mitigation and adaptation, perceptions matter. The optics of moving to a new planet to escape the mess we’ve made here is not a scenario that’s likely to win too many friends amongst those trying to ensure Earth remains habitable. And these factions wield considerable social and economic power – enough to cause problems for SpaceX if they decide to mobilize over this.

There is another risk here too, thanks to a proposed terrestrial use of SpaceX’s BFR as a hyperfast transport between cities on Earth. Musk has recently titillated tech watchers with plans to use commercial rocket flights to make any city on Earth less than an hour’s travel from any other. This is part of a larger plan to make the BFR profitable, and help cover the costs of planetary exploration. It’s a crazy idea – that just might work. But what about the environmental impact?

Even though the BFR will spew out tons of the greenhouse gas carbon dioxide, the impacts may not be much greater than current global air travel (depending how many flights end up happening). And there’s always the dream of creating the fuel – methane and oxygen – using solar power and atmospheric gases. The BFR could even conceivably be carbon-neutral one day.

But at a time when humanity should be doing everything in our power to reduce carbon dioxide emissions, the optics aren’t great. And this could well lead to a damaging backlash before rocket-commuting even gets off the ground.

When the USSR launched Sputnik on Oct. 4, 1957, it also launched the space race.( AP Photo)

Inspiring – or infuriating?
Sixty years ago, the Soviet Union launched Sputnik, the world’s first artificial satellite – and changed the world. It was the dawn of the space age, forcing nations to rethink their technical education programs and inspiring a generation of scientists and engineers.

We may well be standing at a similar technological tipping point as researchers develop the vision and technologies that could launch humanity into the solar system. But for this to be a new generation’s Sputnik moment, we’ll need to be smart in navigating the many social and political hurdles between where we are now and where we could be.

Imagine the possibilities…. (SpaceX, CC BY)

These nontechnical hurdles come down to whether society writ large grants SpaceX and Elon Musk the freedom to boldly go where no one has gone before. It’s tempting to think of planetary entrepreneurialism as simply getting the technology right and finding a way to pay for it. But if enough people feel SpaceX is threatening what they value (such as the environment – here or there), or disadvantaging them in some way (for example, by allowing rich people to move to another planet and abandoning the rest of us here), they’ll make life difficult for the company.

The ConversationThis is where Musk and SpaceX need to be as socially adept as they are technically talented. Discounting these hidden hurdles could spell disaster for Elon Musk’s Mars in the long run. Engaging with them up front could lead to the first people living and thriving on another planet in my lifetime.

About Today's Contributor:
Andrew Maynard, Director, Risk Innovation Lab, Arizona State University


This article was originally published on The Conversation. 

19 February 2017

NASA Cargo Headed to Space Station Includes Important Experiments, Equipment

by
Image via www.nasa.gov
Major experiments that will look into a range of scientific disciplines from human health to atmospheric conditions on Earth are on their way to the International Space Station following liftoff at 9:39 a.m. EST aboard a SpaceX Falcon 9 rocket. About 5,500 pounds of research equipment, cargo and supplies are packed into the SpaceX Dragon spacecraft that is now in Earth orbit and headed to the station on the CRS-10 mission.
SpaceX's Dragon cargo craft launched from Launch Complex 39A at NASA's Kennedy Space Center in Florida. This was the first commercial launch from Kennedy's historic pad.
Astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA will use the space station's robotic arm to capture Dragon when it arrives at the station. Live coverage of the rendezvous and capture will begin at 4:30 a.m. Wednesday, Feb. 22 on NASA TV and the agency's website, with installation coverage set to begin at 8:30 a.m. 
Research materials flying inside the Dragon's pressurized area include a crystal growth experiment that will crystallize a monoclonal antibody that is undergoing clinical trials for the treatment of immunological diseases. Growing the crystal in space will allow it develop more than it could on Earth where gravity causes crystals to collapse on themselves. Preserving these antibodies in crystals allows researchers a glimpse into how the biological molecules are arranged, which can provide new information about how they work in the body. So far, Earth-grown crystalline suspensions of monoclonal antibodies have proven to be too low-quality to fully model.
Better defining how some bacteria become drug-resistant is the focus of another experiment that aims to develop medicines that counter the resistance. Stem cells like those used to treat strokes and other occurrences also will be studied using experiment supplies brought up on this flight.
The equipment aboard the Dragon includes a major instrument that will survey Earth's upper atmosphere in a continuation of one of NASA's longest-running Earth-observing programs. Called SAGE III for Stratospheric Aerosol and Gas Experiment, the instrument examines the levels of ozone, aerosols, nitrogen dioxide and water vapor in the stratosphere and troposphere high above Earth. It is the latest version of an experiment that began in 1979 and has created a multi-decade record of measurements. The 2,200-pound instrument will be connected to the outside of the station to make daily observations for several years.
The mission is the company's tenth cargo flight to the station under NASA's Commercial Resupply Services contract. Dragon's cargo will support dozens of the more than 250 science and research investigations during the station's Expeditions 50 and 51.
Dragon is scheduled to depart the space station in late March, returning nearly 5,000 pounds of science, hardware and crew supplies.
For more than 16 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. A global endeavor, more than 200 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 1,900 research investigations from researchers in more than 95 countries.

NASA Logo. (PRNewsFoto/NASA) 


  • Keep up with the International Space Station, and its research and crews, at: nasa.gov/station
  • Get breaking news, images and features from the station on Instagram and Twitter
  • Learn more about SpaceX's resupply mission at: nasa.gov/spacex

SOURCE: NASA


29 March 2016

How Astronomers Could Find The 'Real' Planet Krypton

by
Planets orbiting a red dwarf, much like Krypton’s star Rao. (NASA/JPL-Caltech)
By Martin Archer, Queen Mary University of London

The search for exoplanets, worlds orbiting stars other than our own, has become a major field of research in the last decade – with nearly 2,000 such planets discovered to date. So the release of Batman v Superman: Dawn of Justice got me thinking: does Superman’s home planet of Krypton actually exist? Or at least a planet very much like it?

We don’t know a huge amount about Krypton. Since the very earliest Superman comic strips, it has been depicted as a rocky planet similar to Earth, but much older. In the film Man of Steel, it was said to be about 8.7 billion years old with intelligent life, Kryptonians, having existed for hundreds of thousands of years – comparable to the amount of time humans have existed on Earth.

Map of the planet Krypton from the Superman comics. (WP:NFCC#4/wikimedia)

Start with the red stars
In order to find Krypton, the first thing we’d need to do is identify its star, or at least its type. For a long time, all we knew was that, unlike the sun, Krypton’s star Rao is red. There are three classes of stars which are red in colour: red dwarfs, red giants and red super giants. While they are very different in size, their red colour tells us that they are some of the coolest stars in existence, with surface temperatures of only just over 3,200°C, about half that of the sun.

Batman v Superman. (Naruto full fighters/Youtube)

Red dwarfs are by far the most common stars – around 75% of the stars in the vicinity of the solar system are of this type. As the name suggests, they are quite small compared to the sun, being between 7.5% and 50% of the sun’s mass.

Meanwhile, our sun will one day become a red giant, as it runs out of its hydrogen fuel – ballooning in size so that it consumes the orbit of the Earth. But that’s nothing compared to a red supergiant – stars which would extend all the way out to the orbit of Saturn.

While depictions of Krypton’s star have varied between these three types over the years, what we see of Rao in Man of Steel points towards it being a red dwarf.

Destination LHS 2520
In 2012, it seemed that the matter was settled when astrophysicist Neil deGrasse Tyson was invited to choose Rao’s real location. He picked a star known as LHS 2520, a red dwarf star in the southern constellation of Corvus. Our searches for planets around this star have so far proved fruitless, but that doesn’t mean it’s not there.

To find an Earth-like exoplanet around a red dwarf star, a good approach would be to use the “radial velocity method” or the “doppler technique”, measuring the small movement a star makes as it responds to the gravitational tug of an orbiting planet.
How to find exoplanets such as Krypton.
So far, we only have a handful of data from this star, taken by the High Accuracy Radial velocity Planet Searcher (HARPS). This means that currently we can only rule out any orbiting gas giants, as those would be the only ones big enough to produce easily noticeable changes in the star’s velocity. A more detailed investigation, however, could still reveal a Krypton-like, rocky “super Earth”.

But even if that isn’t the case, our understanding of how planetary systems form out of clouds of gas, dust and rocks clumping together under gravity seems to suggest that there should always be more than one planet orbiting a star. So if we find one of Krypton’s brothers and sisters, perhaps with more observations we would be able to infer its existence.

To infinity and beyond
But if we fail to find any planets around LHS 2520, we can always look elsewhere. Luckily, searching for planets around red dwarf stars is a major area of research right now.

For instance, Pale Red Dot is an international campaign being coordinated by researchers in the UK searching for Earth-like planets around our nearest stellar neighbour – Proxima Centauri. The discovery of such a world essentially on our doorstop would be momentous, raising hopes that (with advances in space technology) we could one day visit it. The CARMENES project also will be looking at some 300 red dwarf stars over the next three years in search of Earth-like worlds.

Whether any of the worlds we find harbour life, intelligent or otherwise, is another hurdle to tackle – the conditions are likely to be very different from those on our own world. But despite the small probabilities involved, the vast number of red dwarfs out there mean that the existence of a Krypton-like planet is still a possibility.

The Conversation
About Today's Contributor
Martin Archer, Space Plasma Physicist, Queen Mary University of London


This article was originally published on The Conversation

31 January 2016

Why Would Anyone Believe The Earth Is Flat?

by
The Earth as seen from space – looks curved from up there. 
Flickr/NASA's Marshall Space Flight CenterCC BY-NC
By Peter Ellerton, The University of Queensland

Belief in a flat Earth seems a bit like the attempt to eradicate polio – just when you think it’s gone, a pocket of resistance appears. But the “flat Earthers” have always been with us; it’s just that they usually operate under the radar of public awareness.

Now the rapper B.o.B has given the idea prominence through his tweets and the release of his single Flatline, in which he not only says the Earth is flat, but mixes in a slew of other weird and wonderful ideas.

These include the notions that the world is controlled by lizard people, that certain celebrities are cloned, that Freemasons manipulate our lives, that the sun revolves around the Earth and that the Illuminati control the new world order. Not bad for one song.

Even ignoring that these ideas are inconsistent (are we run by lizards, the Freemansons or the Illuminati?), what would inspire such a plethora of delusions? The answer is both straightforward, in that it is reasonably clear in psychological terms, and problematic, in that it can be hard to fix.

16 December 2015

Peake Viewing: From Bizarre Astronaut Traditions To Awe-Inspiring blast Off

by
Tim says bye. Reuters
By Monica Grady, The Open University

Having spent days following him around, it was amazing to finally see the first official UK astronaut, Major Tim Peake, launched into space from Russia’s Baikonur cosmodrome in Kazakhstan. He’s been through six years of training to get to this moment, and will do a six-month tour of duty on the International Space Station.

I was part of the press team that followed Peake and his crew mates Tim Kopra (NASA) and Yuri Malenchenko (Roscosmos) around as they went through the final few tests prior to their launch. It was a really interesting experience seeing all the strange traditions taking place away from the public eye – and not just from the point of view of finding out about astronaut preparation.

You Might Also Like